新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站
您现在的位置:奥数 > 家庭教育 > 学习方法 > 正文

薛俊梅老师:“鸡兔同笼”问题的“假设法”及应用

来源:学而思教育 文章作者: 2008-09-27 09:14:21

智能内容

  "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中,也是小学奥数中很经典、很重要的一类问题,用寻常方法去解是相当费力的,但是如果掌握了一定的思考方法,类似的难题就会迎刃而解了。下面我就以"鸡兔同笼"为例进行解析,以抛砖引玉。

  有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

  解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).

  在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,

  有34只兔子.当然鸡就有54只.

  答:有兔子34只,鸡54只.

  上面的计算,可以归结为下面算式:

  总脚数÷2-总头数=兔子数.

  上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.

  还说上题:

  如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).

  每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)=54(只).

  说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式

  鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).

  当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).

  每只鸡比每只兔子少(4-2)只脚68÷2=34(只).说明设想中的"鸡",有34只是兔子。

  上面解法也可以列出公式

  兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).

  上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.

  假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法".

  "鸡兔同笼"许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路.